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QEJ ABSTRACT

In this paver we make the point that a wide
varivty of spectrum types admit to modal analysis
wherein the medes are characterized by omplitudes,
{requencivs, aud damping factors. The associated
modal decomposition is appropriate for both con-
tinusous and discrete components of the spectrum.
The domain of attraction for the decomposition
includes ARMA sequences, harmonically- or nonhar-
monically~related sinusoids, damped sinusoids,
whkite noise, and lipear combinations of these.

Numcrical results are presented to illustrate
the identificatrion of mode parameters and corre-
sponding spectra from finite records of perfect
and estimated covariance sequences. The resulgs
for sinusvids and sinusoids in white noise are
interpreted in terms of inphase and quadrature
effects aturioutable to the finite record length.

INTRODUCTION /’\D\

This is a paper about parametric covariance
scquence approximation for the purposes of model
identification and spectrum analysis. As with all
paramctric methods of analysis the key {dea 1% to
posce a defensible model for the data, or somv
importunt statistical descriptor such as the covar-
iance sequence, and then to identify model param-
eters,

Our approach (s to represent the covariance
sequence of a wide-sense stationary process in a
modal decomposition., Amplitudes, frequencies
(formants), and damping constants then become mode
parameters to bLe identified. These mode paramcters
may be used in vibration analysis, speech analysis,
and forecasting and control.

Corresponding to the modal decomposition for
the covariance sequence is a modal decomposition
for the undcerlying process. Thus the decomposition
becomes an analysis/synthesis tool applicable Lo
data~compiressed speech and data communication, and
to stochastic svimulation. The resulting synthce-
sizer might e termed a statistical vocoder to

1Supported by the Office of Naval Research under
Contract NOOD14-75-C~0518 and the Army Research
Office under Contract DAAG29-79-C-0176.

distinquish it from source and channel vocoders,
and to suggest that identification of formants and
other mode parameters proceeds statistically.

The domain of attraction for our modal decon-
position of the covariance sequence includes ARMA
processes, harmonically- or nonharmonically-related
sinusoids, white noise, and linear combinations cf
these. This means the decomposition generali:es
the covariance sequence model implicit in DFT,
Pisarenko [3], and linear prediction formulations
of the parametric spectrum analysis problem in the
same way that Prony's ancient model [1] general-
izes DFT, almost periodic, and autoregressive
models for data.

COVARIANCE SEQUENCE APPROXIMANT

Motivated by the form of the covariance
sequence for line and ratlonal spectra, we
propose the following order-p covariance sequence
approximant:

P t
r(p) = L A,z , t=0,1,2,...
t i=1 i1

r_ () = r ()

1

We call zs the 1tl complex mode, with frequency .,

and radius p,, and A, the corresponding mode weignt.

The weights énd modes appear in complex conjugate

pairs. Typically a subset of the p, are unity to
model the discrete component of the spectrum, and
the rest are less than unity to model the continu-
ous part of the spectrum. See [2] for review of
discrete-time spectral theory.

The Prony Device: Begin with a finite covari-
ance string (r,,r ,...,r’_l....rz _,), assumed to
be the first 2p Fourier gcries cogificlcnts for o
density f(w). Solve for the regression coeffi-
clents (nl.az,...,up) that satisfy




Form the polynomial

-1

P(z) =1l +az + ...+ apz"p

o 1

Vandermonde matrix

M1 1.1 ]

o

i zp-l
1 p J

L

and solve for weights Al 5
ing system of equations?

[ r
A Yo
A N
v - .
ApJ {rp~1J

k The modal cecomposition

3 reconstructs (r ,...,r2 -1
& linear conhinnl?nn of cgmplex modes.

r -l)’ P>y, comes from an ARMA (p
. tﬁgn A = 0 for p > p, and the modal 9
$ mat chel r, for all t.”~ Here Py < Pge

. r
f(w) = & rt(p)olt‘ejtw

t=-p

rior to the unit disc.

r2p-2 P rp-l Lap Ler—l
L

and find its roots zl,zz,...,zp. Construct the

WA ,...,AP in the follow-

) and extends it as a
ecompos [tion

The Fejer bevice: The trigonometric sum

uniformly approximates {(w) as ptl and pt~,

the term p t simply draws the modes zit

; t
1 (pzl)I ~corresponding to pole locations more inte-
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ANALYSIS AND SYNTHESIS
Assume we are given a modal decomposition of

the form

( oAt
r(p)= L Az t=0,1,...
t 4= 11 ’

The following question naturally arises: is there
a finite-dimensional spectrum representation (or

vocoder) that generates stochastic realizations of
the wide-sense stationary process X, that has r:(p)

for its covariance? The answer is a qualified yes, .

and the development goes as follows.

Let X be a complex process generated by the
autoregresgive scheme

N(0,A)

€, : sequence of i.i.d. N(O.(l-lolz)A)
random variables .

This process has covariance
t
Rt = Ap , t=0,1,...
The process

Jut
xt - xte

with w fixed and independent of Xt has covariance

rt b Azt

z = pejw
Think of x_ generated this way as x, (A,p,.). Gen-
erate p 1n§ependent processes like Ehis of the fcrm
x, = xt(Ai'pi'ui) and sum to get

Py
x = I x
toat

with covariance

This statistical vocoder is illustrated in Figure 1.

It generates a special class of processes with
modal decompositlons such that A, > 0, It captures
DFT and Pisarenko decompositions”as special cases.

2Thc notation X_:N(0,A) indicates X_ is complex
normal with mcgn zcero and variance A>0. The model
is trivially generalized to other distributiona.
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PARAMETER IDERTIFICATION FROM A FINITE RECORD

In this section we prupose a two-step (a-one,
a-two) proccedure for obtaining a modified least
squares fit of r (p) to a covariance string that
has been estimatéd as follows:

X, X
t N Rl g S

Least_Scuares: Define the squared error

between rt(") and t r, as follows:

-1 2
E= ¢ (rt-rt(p))
t=-N4]

Setting derivatives of E with respect to (A ,z)),
i=1,2,...,» to zero yields a discrete form of {he
Algrain-wWillfoms equations {[6], slightly modified
to reflect tiwe fact we are approximating a two-
sided sequence:

w=1

SQAE‘— : I (!‘t~t‘t(p))ziltl=0 (i=1,2,...,p)
I ote el
1"1
2E (r_-r (p))A‘ft[zltl-l- 0
92)  tmey1 C T '

(1=1,2,... ,P)

Using the syaretry of the r_ and r (p) sequences
we may wriie this system of equations as

PTQr = PTQPA

#Tqr = 3%qea

where
- ‘ Tr A
1 ... 1 _ij ]
z 2 z .. .0
i A p
Pe .o o] ®
. . . 0
-1 - .
sz - 2P j 0 [
1 P L -
T
r o= (r 0 Ty o Ty l)
A= (nl,... A
- P
B oa 5j~ P
f=1 1

This systen of equations is nonlinear in the param-
eters (A ,2Z and calls for iterative procedurecs

if the qolugion is to be "exact". We suggest here
a modif:ication of these equations for which a
tractable solution procedure exists.

A Modification & Solution: Constider the

modifled squared error

N-1 [ 2
E = £ (1 af(r_.-r__(PN° ; a =1
‘m t=p  1=0 1V e-1i g1 0

This amounts to filtering the errors with a moving
average filter and counting them after p steps
have elapsed. If the filter weights are selected
so that

P - P -
z aiz i. n (l-ziz 1)
i=0 i=1

then the approximating r (p) sequence satisfies
this homogeneous differerice equation on its tail:

p
r ar ,(p)=0 , t>p
. 1=1 1 e-1
’
This is one of the things Prony saw while studyving
the effects of alcohol vapor pressures in 1795.
With this modification the contribution of
r (p) to the modified squared error is annihilated
arid we are left with

N-1 p 2
E = £ (I a,r_.)
m t=p 1=0 it-i

Minimization with respect to the a, leads to a
covarlance-method of linear predzcéion ca the tail
of the covariance sequence,

RTRa = —RTr ,
- P

where
rp_l PO rl ro .‘
R =
fy-1 Tn-2 ¢ o - rN_p
rT = (r ,r R |
= p’ ptl’ 'UN-1
a

= (al....,ap)

The elements of RTR are "covariances of covari-
ances".,

There are a variety of fast algorithms for
solving these equations. Once the a, are found
the corresponding modes 2z, are obtaifried using a
polynomial rootfinding routine such as Muller's
algorithm [4]. With these modes determined we mav
solve a lincar system of equations for the mode
weights A, . This is basically Prony's method at
work except for the fact that the a, are obtaineg
from a squared ervor criterion rather than Pronv'.
point-wise criterion that results f om setting
N=2p:

PA——

- gy oy



Ra = ¢

One cannot help wondering what path statisti-
cal inference might have taken had Gauss been
aware of Prony's parametric interpolation formu-
lae when he published his work on least-squares
in 1809. For at this early date all the ingred-
ients of a least-squares theory of rational
approximation would have existed.

APPLICATIONS AND NUMER!CAL RESULTS

Here we present the results of several numeri-
cal experiments. These experiments are summar-
ized in Table 1. 1n the table the column labels
nave the following meanings:

Exact Model-Underlying model that generated
data

No. Samples - Number of samples used to esti-
mate r[ (© means exact covariance used)

No. Corr. Lags - Number of correlation lags
used in fitting algorithm

Fitted ARMA(-,+) - For the modal decomposi-
tion the initial order denotes the initial
number of poles identified. When the final
order differs from the initial order this
means a noise pole (at z=0) was added. For
the modified least squares (MLS) the initial
order telld what order AR was fit to ini~-
tialize. The final order gives the approx-
imating ARMA.

Two Closely-Spaced Sines In WGN: Mere

n "
~t + U. . -
r, = cos g t 0.01 cos.95 it + 100 ét
Sce Figure 2 for spectrum of approximating modai
decomposition.

Sine_fn AR Noise: Here

r, = cosmt + Z_I(H(z)H(z-l)}

H(z) = 1/(1-j0.81-1)(l+j0.82-l)

See Figurce 3 for spectrum of approximating modal
decomposition.

Comment: In a 1976 paper on digital filter design
[6] one of us advocated a two step procedure for
fitting long AR sequences to exact correlation se-
quences, followed by modified least squares fitting
of an ARMA(p,q). The modified least squares pro-
cedure was originally propused by Kalman and subse-
quently fully developed by Mullis and Roberts [7].
At the end of that paper we suggested that the

same procedure might be applied to ARMA spectrum
analysis. This suggestion we have explored in con-
junction with our modal decomposition studies.
Speetral results for moditled least squares fltting
frem long AR models are shown together with spectra
for modal decompusitions In the following exanples.

Sine: Here

x = sin T ¢
t

4

100

I x.x

r
Feflie t T

t 100
See Figure 4 for spectra of approximating modal
decomposition and approximating modified least

squares fit.

Two Closely-Spaced Sines: Here

n n
x, sin Z—t + cos.95 % t

1 160

Te ¥ 160

X, X
{=1 174+¢
Sec Figure 5 for spectra of approximating modal
decomposition and approximating modified least
squares fit.

ARMA(1,1): Here x_ is the output of the
following filter excited by white noise:

1-0.957"%

H(z) = 1
1-0.25z
See Figure 6 for spectra of approximating modal
decomposition and approximating modified least
squares fit.

ARMA(3,2): Here x_ is the output of the
following filter excited by white noise:

1-1.752 2+0.8272

H(z) = -1 -2 -
1-1.52""41.212 “-0.455z

3

See Figure 7 for spectra of approximating modal
decomposition and approximating modified least
squares fit.

More examples may be found in [5].

CONCLUSIORS

We have proposed an approach to covariance
sequences and rational spectrum approximation that
captures discrete spectra and ARMA spectra as spe-
c'al cases. The approach is based on a modal de-
composition for the covariance sequence wherein
the modes correspond to poles. For a special clas:
of processes with modal decomposition there is a
stochastic synthesis algorithm (or statistical ve-
coder) that may be used to renerate realizations.
This could be a valuable algorithm for data-com-
pressed communication based on the analysis/syn-
thesis ideas of this paper.

Numerical results for noise-free and noisy
sinusoids are encouraging. A virtue of this
technique-and a virtue we want to emphasize-is
that one obtains from the analysis technique both
a spectrum and a map of the underlying modes of
the covarfance sequence. These modes may be more
valuable in some instances than the spectrum it-
gelf. In fact, the spectrum f(w) can often ob-
scure very interesting fince structure in the dat:
that one can observe directly in the covariance
sequence approximant rt(p).
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